Bayesian test of independence and conditional independence of two ordinal variables
نویسندگان
چکیده
منابع مشابه
Bayesian Test of Significance for Conditional Independence: The Multinomial Model
Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning ...
متن کاملSelf-Discrepancy Conditional Independence Test
Tests of conditional independence (CI) of random variables play an important role in machine learning and causal inference. Of particular interest are kernel-based CI tests which allow us to test for independence among random variables with complex distribution functions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation T...
متن کاملModel-Powered Conditional Independence Test
We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution f(x, y, z) of continuous random vectors X,Y and Z, we determine whether X ⊥ Y |Z. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifier...
متن کاملPropositional Independence Conditional independence
Independence – the study of what is relevant to a given problem of reasoning – is an important AI topic. In this paper, we investigate several notions of conditional independence in propositional logic: Darwiche and Pearl’s conditional independence, and two more restricted forms of it, called strong conditional independence and perfect conditional independence. Many characterizations and proper...
متن کاملA Bayesian Multiresolution Independence Test for Continuous Variables
In this paper we present a method of computing the posterior probability of conditional independence of two or more continuous variables from data, examined at several resolutions. Our approach is motivated by the observation that the appearance of continuous data varies widely at various resolutions, producing very different independence estimates between the variables involved. Therefore, it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Theory and Applications
سال: 2015
ISSN: 2214-1766
DOI: 10.2991/jsta.2015.14.2.4